
Exploiting the jemalloc
Memory Allocator:
Owning Firefox’s Heap
Patroklos Argyroudis, Chariton Karamitas
{argp, huku}@census-labs.com

Outline

jemalloc: You are probably already using it

Technical overview: Basic structures, algorithms

Exploitation strategies and primitives

No unlinking, no frontlinking

Case study: Mozilla Firefox

Mitigations

Who are we

Patroklos Argyroudis, argp

Researcher at Census, Inc. (www.census-labs.com)

Topics: kernel/heap exploitation, auditing

Chariton Karamitas, huku

Student at AUTh, intern at Census, Inc.

Topics: compilers, heap exploitation, maths

http://www.census-labs.com
http://www.census-labs.com

jemalloc: You’re probably
already using it

jemalloc
FreeBSD needed a high performance, SMP-capable
userland (libc) allocator

Mozilla Firefox (Windows, Linux, Mac OS X)

NetBSD libc

Standalone version

Facebook, to handle the load of its web services

Defcon CTF is based on FreeBSD

jemalloc flavors... yummy

Latest FreeBSD (9.0-RELEASE)

Mozilla Firefox 13.0.1

Standalone 3.0.0

Linux port of the standalone version

Tested on x86 (Linux) and x86-64 (OS X, Linux)

SMP systems &
multithreaded applications

Avoid lock contention problems between
simultaneously running threads

Many arenas, the central jemalloc memory
management concept

A thread is either assigned a fixed arena, or a different
one every time malloc() is called; depends on the
build configuration

Assignment algorithms: TID hashing, pseudo random,
round-robin

jemalloc overview

Minimal page utilization not as important anymore

Major design goal: Enhanced performance in retrieving
data from the RAM

Principle of locality

Allocated together used together

Effort to situate allocations contiguously in memory

Technical overview

Central concepts
Memory is divided into chunks, always of the same
size

Chunks store all jemalloc data structures and user-
requested memory (regions)

Chunks are further divided into runs

Runs keep track of free/used regions of specific sizes

Regions are the heap items returned by malloc()

Each run is associated with a bin, which stores trees of
free regions (of its run)

jemalloc basic design

Chunks
Big virtual memory areas that jemalloc conceptually
divides available memory into

jemalloc flavor Chunk size
Mozilla Firefox 1 MB

Standalone 4 MB
jemalloc_linux 1 MB

FreeBSD Release 1 MB
FreeBSD CVS 2 MB

Chunks (arena_chunk_t)

Chunks

When MALLOC_VALIDATE is defined, Firefox stores all
chunks in a global radix tree, the chunk_rtree

Our unmask_jemalloc.py uses the aforementioned
radix tree to traverse all active chunks

Note that chunk != arena_chunk_t since chunks
are also used to serve huge allocations

Arenas
Arenas manage the memory that jemalloc divides into
chunks

Arenas can span more than one chunk

And page: depending on the chunk and page sizes

Used to mitigate lock contention problems

Allocations/deallocations happen on the same arena

Number of arenas: 1, 2 or 4 times the CPU cores

Arenas (arena_t)

Arenas

Global to the allocator:
arena_t **arenas;

unsigned narenas;

gdb$ print arenas[0]

$1 = (arena_t *) 0xb7100740

gdb$ x/x &narenas

0xb78d8dc4 <narenas>: 0x00000010

Runs

Runs are further denominations of the memory that has
been divided into chunks

A chunk is divided into several runs

Each run is a set of one or more contiguous pages

Cannot be smaller than one page

Aligned to multiples of the page size

Runs
Runs keep track of the state of end user allocations, or
regions

Each run holds regions of a specific size, i.e. no mixed
size runs

The state of regions on a run is tracked with the
regs_mask[] bitmask

0: in use, 1: free

regs_minelm: index of the first free element of
regs_mask

Runs (arena_run_t)

Regions

End user memory areas returned by malloc()

Three size classes

Small/medium: smaller than the page size

Large: huge > large > small/medium

Huge: bigger than the chunk size

Region size classes

Small/medium regions are placed on different runs
according to their size

Large regions have their own runs

Each large allocation has a dedicated run

Huge regions have their own dedicated contiguous
chunks

Managed by a global red-black tree

Bins
Bins are used to store free regions

They organize regions via run and keep metadata on
them

Size class

Total number of regions on a run

A bin may be associated with several runs

A run can only be associated with a specific bin

Bins have their runs organized in a tree

Bins

Each bin has an associated size class and stores/
manages regions of this class

These regions are accessed through the bin’s run

Most recently used run of the bin: runcur

Tree of runs with free regions: runs

Used when runcur is full

Bins (arena_bin_t)

Bins
int main()
{
 one = malloc(0);

 two = malloc(8);

 three = malloc(16);

 return 0;
}

gdb$ print arenas[0].bins[0].runcur
$1 = (arena_run_t *) 0xb7d01000

gdb$ print arenas[0].bins[1].runcur
$2 = (arena_run_t *) 0

gdb$ print arenas[0].bins[2].runcur
$3 = (arena_run_t *) 0xb7d02000

gdb$ print arenas[0].bins[3].runcur
$4 = (arena_run_t *) 0xb7d03000

gdb$ print arenas[0].bins[4].runcur
$5 = (arena_run_t *) 0

Bins
int main()
{
 one = malloc(0);

 two = malloc(8);

 three = malloc(16);

 return 0;
}

gdb$ print arenas[0].bins[0].reg_size
$6 = 0x02

gdb$ print arenas[0].bins[1].reg_size
$7 = 0x04

gdb$ print arenas[0].bins[2].reg_size
$8 = 0x08

gdb$ print arenas[0].bins[3].reg_size
$9 = 0x10

gdb$ print arenas[0].bins[4].reg_size
$10 = 0x20

Architecture of jemalloc

Allocation algorithm
ALGORITHM malloc(size):
 IF NOT initialized:
 malloc_init()

 IF size < 1Mb:
 arena = choose_arena()

 IF size < 4Kb:
 bin = bin_for_size(arena, size)
 run = run_for_bin(bin)
 ret = find_free_region(run)
 ELSE:
 ret = run_alloc(size)

 ELSE:
 ret = chunk_alloc(size)

 RETURN ret

Deallocation algorithm
ALGORITHM free(ptr):
 IF NOT is_chunk_aligned(ptr):
 chunk = chunk_for_region(ptr)

 IF NOT is_large(ptr):
 run = run_for_region(chunk, ptr)
 run_region_dealloc(run, ptr)
 ELSE:
 run_dealloc(ptr)

 ELSE:
 chunk_dealloc(ptr)

 RETURN

Exploitation tactics

No unlinking, no frontlinking
Unlike glibc’s dlmalloc, jemalloc:

Does not make use of linked lists

Red-black trees & Radix trees

Is not very happy with double free()

Does not use unlink()or frontlink() style code
that has historically been the #1 target for exploit
developers

Bummer!

Exploitation techniques
Need to cover all possible cases of data or metadata
corruption:

Adjacent memory overwrite

Run header corruption

Chunk header corruption

Magazine (a.k.a thread cache) corruption

Not covered in this presentation as Firefox does
not use thread caching; see [2, 3] for details

Exploitation techniques
For the following slides we made some assumptions:

A memory/information leak will most likely grant you
full control in target’s memory since all addresses will
eventually be predictable

We thus focus on techniques where only the first few
bytes of metadata are actually corrupted

Being able to leak data means you can overwrite
metadata with their current values so as not to
break the heap’s state

Adjacent memory overwrite

Main idea:

Prepare the heap so that the overflown and the
victim region end up being adjacent

Trigger the overflow

Yes, that simple; it’s just a 20-year-old technique

Adjacent memory overwrite

Primary target candidates:

C++ virtual table pointers or virtual function pointers

Normal structures containing interesting data

jmp_buf’s used by setjmp() and longjmp()
(e.g. libpng error handling)

Use your brains; it’s all about bits and bytes

Run header corruption
Main idea:

A region directly bordering a run header is overflown

Assume that the overflown region belongs to run A
and the victim run is B

B’s regs_minelm is corrupted

On the next allocation serviced by B, an already
allocated region from A is returned instead

Run header corruption

Let’s have a look at the run header once again:

*bin pointer used only on deallocation

Run header corruption

What if we overwrite regs_minelm?

We can make regs_mask[regs_minelm] point
back to regs_minelm itself!

Need to set regs_minelm = 0xfffffffe (-2) for
that purpose

Run header corruption

Run header corruption
*ret will point 63 regions backwards

63 * bin->reg_size varies depending on the
bin

For small-medium sized bins, this offset ends up
pointing somewhere in the previous run

Heap can be prepared so that the previous run
contains interesting victim structures (e.g. a struct
containing function pointers etc)

Run header corruption

There’s always the possibility of corrupting the run’s
*bin pointer but:

It’s only used during deallocation

Requires the ability to further control the target’s
memory contents

Chunk header corruption
Main idea:

Make sure the overflown region belonging to chunk
A borders chunk B

Overwrite B’s *arena pointer and make it point to
an existing target arena

free()‘ing any region in B will release a region from
A which can later be reallocated using malloc()

The result is similar to a use after free() attack

Chunk header corruption

Chunk header corruption

One can, of course, overwrite the chunk’s *arena
pointer to make it point to a user controlled fake arena:

Will result in total control of allocations and
deallocations

Requires precise control of the target’s memory

Mostly interesting in the case of an information/
memory leak

Case study: Mozilla Firefox

OS X and gdb/Python
Apple’s gdb is based on the 6.x tree, i.e. no Python
scripting

New gdb snapshots support Mach-O, but no fat
binaries

lipo -thin x86_64 fat_bin -o x86_64_bin

Our utility to recursively use lipo on Firefox.app binaries:
lipodebugwalk.py

Before that, use fetch-symbols.py to get debug
symbols

OS X and gdb/Python

unmask_jemalloc

Firefox heap manipulation

Uncertainty is the enemy of (reliable) exploitation

Goal: predictable heap arrangement

Tools: Javascript, HTML

Essential: triggering the garbage collector

Debugging tools: gdb/Python

Controlled allocations

Number of regions on the target run

Javascript loop

Size class of the target run

Powers of 2 (due to substr())

2 4 8 16 32 64 128 256 512 1024 2028 4096

Content on the target run

Unescaped strings and arrays

Allocation example
function jemalloc_spray(blocks, size) {
 var block_size = size / 2;
 var marker = unescape(“%ubeef%udead”);
 var content = unescape(“%u6666%u6666”);

 while(content.length < block_size / 2) {
 content += content;
 }

 var arr = [];
 for(i = 0; i < blocks; i++) {
 ...
 var block = marker + content + padding;

 while(block.length < block_size) {
 block += block;
 }

 arr[i] = block.substr(0);
 }
}

Controlled deallocations
 ...

 for(i = 0; i < blocks; i += 2) {
 delete(arr[i]);
 arr[i] = null;
 }

 var ret = trigger_gc();
 ...
}

function trigger_gc() {
 var gc = [];

 for(i = 0; i < 100000; i++) {
 gc[i] = new Array();
 }

 return gc;
}

jemalloc spraying

Firefox implements mitigations against traditional heap
spraying

Allocations with comparable content are blocked

The solution is to add random padding to your
allocated blocks [1]

For a complete example see our
jemalloc_feng_shui.html

CVE-2011-3026

Integer overflow in libpng in
png_decompress_chunk()

Leads to a heap allocation smaller than expected and
therefore to a heap buffer overflow

Vulnerable Firefox version: 10.0.1

Vulnerable libpng version: 1.2.46

The vulnerability

Exploitation strategy
Adjacent region corruption

The integer overflow enables us to control the
allocation size

Select an appropriate size class, e.g. 1024

Spray the runs of the size class with appropriate
objects (0xdeadbeef in our example)

Free some of them, creating gaps of free slots in the
runs, load crafted PNG

See our cve-2011-3026.html

Integer overflow

prefix_size and expanded_size are user-
controlled
0x2ec == 748

The allocation is placed on the 1024 jemalloc run

Game over

Conclusion

Mitigations
Since April 2012 jemalloc includes red zones for small/
medium regions (huge overhead, disabled by default)

What about randomizing deallocations?

A call to free() can just insert the argument in a pool
of regions ready to be free()‘ed

A random region is then picked and released.

This may be used to avoid predictable deallocations

...but it breaks the principle of locality

Redzone

Concluding remarks
jemalloc is being increasingly used as a high
performance heap manager

Although used in a lot of software packages, its
security hasn’t been assessed; until now

Traditional unlinking/frontlinking exploitation primitives
are not applicable to jemalloc

We have presented novel attack vectors and a case
study on Mozilla Firefox

Utility (unmask_jemalloc) to aid exploit development

Acknowledgements

jduck

Larry H.

George Argyros

Dan Rosenberg

Phrack staff

References
[1] Heap spraying demystified, corelanc0d3r, 2011

[2] Pseudomonarchia jemallocum, argp, huku, 2012

[3] Art of exploitation, exploiting VLC, a jemalloc case
study, huku, argp, 2012

[4] Heap feng shui in javascript, Alexander Sotirov,
2007

[5] unmask_jemalloc, argp, huku, https://github.com/
argp/unmask_jemalloc

https://github.com/argp/unmask_jemalloc
https://github.com/argp/unmask_jemalloc
https://github.com/argp/unmask_jemalloc
https://github.com/argp/unmask_jemalloc

