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jemalloc: You’re probably 
already using it



jemalloc
FreeBSD needed a high performance, SMP-capable 
userland (libc) allocator

Mozilla Firefox (Windows, Linux, Mac OS X)

NetBSD libc

Standalone version

Facebook, to handle the load of its web services

Defcon CTF is based on FreeBSD



jemalloc flavors... yummy

Latest FreeBSD (9.0-RELEASE)

Mozilla Firefox 13.0.1

Standalone 3.0.0

Linux port of the standalone version

Tested on x86 (Linux) and x86-64 (OS X, Linux)



SMP systems & 
multithreaded applications

Avoid lock contention problems between 
simultaneously running threads

Many arenas, the central jemalloc memory 
management concept

A thread is either assigned a fixed arena, or a different 
one every time malloc() is called; depends on the 
build configuration

Assignment algorithms: TID hashing, pseudo random, 
round-robin



jemalloc overview

Minimal page utilization not as important anymore

Major design goal: Enhanced performance in retrieving 
data from the RAM

Principle of locality

Allocated together            used together

Effort to situate allocations contiguously in memory



Technical overview



Central concepts
Memory is divided into chunks, always of the same 
size

Chunks store all jemalloc data structures and user-
requested memory (regions)

Chunks are further divided into runs

Runs keep track of free/used regions of specific sizes

Regions are the heap items returned by malloc()

Each run is associated with a bin, which stores trees of 
free regions (of its run)



jemalloc basic design



Chunks
Big virtual memory areas that jemalloc conceptually 
divides available memory into

jemalloc flavor Chunk size
Mozilla Firefox 1 MB

Standalone 4 MB
jemalloc_linux 1 MB

FreeBSD Release 1 MB
FreeBSD CVS 2 MB



Chunks (arena_chunk_t)



Chunks

When MALLOC_VALIDATE is defined, Firefox stores all 
chunks in a global radix tree, the chunk_rtree

Our unmask_jemalloc.py uses the aforementioned 
radix tree to traverse all active chunks

Note that chunk != arena_chunk_t since chunks 
are also used to serve huge allocations



Arenas
Arenas manage the memory that jemalloc divides into 
chunks

Arenas can span more than one chunk

And page: depending on the chunk and page sizes

Used to mitigate lock contention problems

Allocations/deallocations happen on the same arena

Number of arenas: 1, 2 or 4 times the CPU cores



Arenas (arena_t)



Arenas

Global to the allocator:
arena_t **arenas;

unsigned narenas;

gdb$ print arenas[0]

$1 = (arena_t *) 0xb7100740

gdb$ x/x &narenas

0xb78d8dc4 <narenas>: 0x00000010



Runs

Runs are further denominations of the memory that has 
been divided into chunks

A chunk is divided into several runs

Each run is a set of one or more contiguous pages

Cannot be smaller than one page

Aligned to multiples of the page size



Runs
Runs keep track of the state of end user allocations, or 
regions

Each run holds regions of a specific size, i.e. no mixed 
size runs

The state of regions on a run is tracked with the 
regs_mask[] bitmask

0: in use, 1: free

regs_minelm: index of the first free element of 
regs_mask



Runs (arena_run_t)



Regions

End user memory areas returned by malloc()

Three size classes

Small/medium: smaller than the page size

Large: huge > large > small/medium

Huge: bigger than the chunk size



Region size classes

Small/medium regions are placed on different runs 
according to their size

Large regions have their own runs

Each large allocation has a dedicated run

Huge regions have their own dedicated contiguous 
chunks

Managed by a global red-black tree



Bins
Bins are used to store free regions

They organize regions via run and keep metadata on 
them

Size class

Total number of regions on a run

A bin may be associated with several runs

A run can only be associated with a specific bin

Bins have their runs organized in a tree



Bins

Each bin has an associated size class and stores/
manages regions of this class

These regions are accessed through the bin’s run

Most recently used run of the bin: runcur

Tree of runs with free regions: runs

Used when runcur is full



Bins (arena_bin_t)



Bins
int main() 
{
  one = malloc(0);

  two = malloc(8);

  three = malloc(16);

  return 0;
}

gdb$ print arenas[0].bins[0].runcur
$1 = (arena_run_t *) 0xb7d01000

gdb$ print arenas[0].bins[1].runcur
$2 = (arena_run_t *) 0

gdb$ print arenas[0].bins[2].runcur
$3 = (arena_run_t *) 0xb7d02000

gdb$ print arenas[0].bins[3].runcur 
$4 = (arena_run_t *) 0xb7d03000

gdb$ print arenas[0].bins[4].runcur 
$5 = (arena_run_t *) 0



Bins
int main() 
{
  one = malloc(0);

  two = malloc(8);

  three = malloc(16);

  return 0;
}

gdb$ print arenas[0].bins[0].reg_size
$6 = 0x02

gdb$ print arenas[0].bins[1].reg_size
$7 = 0x04

gdb$ print arenas[0].bins[2].reg_size
$8 = 0x08

gdb$ print arenas[0].bins[3].reg_size 
$9 = 0x10

gdb$ print arenas[0].bins[4].reg_size 
$10 = 0x20



Architecture of jemalloc



Allocation algorithm
ALGORITHM malloc(size):
    IF NOT initialized:
        malloc_init()

    IF size < 1Mb:
        arena = choose_arena()

        IF size < 4Kb:
            bin = bin_for_size(arena, size)
            run = run_for_bin(bin)
            ret = find_free_region(run)
        ELSE:
            ret = run_alloc(size)

    ELSE:
        ret = chunk_alloc(size)

    RETURN ret



Deallocation algorithm
ALGORITHM free(ptr):
    IF NOT is_chunk_aligned(ptr):
        chunk = chunk_for_region(ptr)

        IF NOT is_large(ptr):
            run = run_for_region(chunk, ptr)
            run_region_dealloc(run, ptr)
        ELSE:
            run_dealloc(ptr)

    ELSE:
        chunk_dealloc(ptr)

    RETURN



Exploitation tactics



No unlinking, no frontlinking
Unlike glibc’s dlmalloc, jemalloc:

Does not make use of linked lists

Red-black trees & Radix trees

Is not very happy with double free()

Does not use unlink()or frontlink() style code 
that has historically been the #1 target for exploit 
developers

Bummer!



Exploitation techniques
Need to cover all possible cases of data or metadata 
corruption:

Adjacent memory overwrite

Run header corruption

Chunk header corruption

Magazine (a.k.a thread cache) corruption

Not covered in this presentation as Firefox does 
not use thread caching; see [2, 3] for details



Exploitation techniques
For the following slides we made some assumptions:

A memory/information leak will most likely grant you 
full control in target’s memory since all addresses will 
eventually be predictable

We thus focus on techniques where only the first few 
bytes of metadata are actually corrupted

Being able to leak data means you can overwrite 
metadata with their current values so as not to 
break the heap’s state



Adjacent memory overwrite

Main idea:

Prepare the heap so that the overflown and the 
victim region end up being adjacent

Trigger the overflow

Yes, that simple; it’s just a 20-year-old technique



Adjacent memory overwrite

Primary target candidates:

C++ virtual table pointers or virtual function pointers

Normal structures containing interesting data

jmp_buf’s used by setjmp() and longjmp() 
(e.g. libpng error handling)

Use your brains; it’s all about bits and bytes



Run header corruption
Main idea:

A region directly bordering a run header is overflown

Assume that the overflown region belongs to run A 
and the victim run is B

B’s regs_minelm is corrupted

On the next allocation serviced by B, an already 
allocated region from A is returned instead



Run header corruption

Let’s have a look at the run header once again:

*bin pointer used only on deallocation



Run header corruption

What if we overwrite regs_minelm?

We can make regs_mask[regs_minelm] point 
back to regs_minelm itself!

Need to set regs_minelm = 0xfffffffe (-2) for 
that purpose



Run header corruption



Run header corruption
*ret will point 63 regions backwards

63 * bin->reg_size varies depending on the 
bin

For small-medium sized bins, this offset ends up 
pointing somewhere in the previous run

Heap can be prepared so that the previous run 
contains interesting victim structures (e.g. a struct 
containing function pointers etc)



Run header corruption

There’s always the possibility of corrupting the run’s 
*bin pointer but:

It’s only used during deallocation

Requires the ability to further control the target’s 
memory contents



Chunk header corruption
Main idea:

Make sure the overflown region belonging to chunk 
A borders chunk B

Overwrite B’s *arena pointer and make it point to 
an existing target arena

free()‘ing any region in B will release a region from 
A which can later be reallocated using malloc()

The result is similar to a use after free() attack



Chunk header corruption



Chunk header corruption

One can, of course, overwrite the chunk’s *arena 
pointer to make it point to a user controlled fake arena:

Will result in total control of allocations and 
deallocations

Requires precise control of the target’s memory

Mostly interesting in the case of an information/
memory leak



Case study: Mozilla Firefox



OS X and gdb/Python
Apple’s gdb is based on the 6.x tree, i.e. no Python 
scripting

New gdb snapshots support Mach-O, but no fat 
binaries

lipo -thin x86_64 fat_bin -o x86_64_bin

Our utility to recursively use lipo on Firefox.app binaries: 
lipodebugwalk.py

Before that, use fetch-symbols.py to get debug 
symbols



OS X and gdb/Python



unmask_jemalloc



Firefox heap manipulation

Uncertainty is the enemy of (reliable) exploitation

Goal: predictable heap arrangement

Tools: Javascript, HTML

Essential: triggering the garbage collector 

Debugging tools: gdb/Python



Controlled allocations

Number of regions on the target run

Javascript loop

Size class of the target run

Powers of 2 (due to substr())

2 4 8 16 32 64 128 256 512 1024 2028 4096

Content on the target run

Unescaped strings and arrays



Allocation example
function jemalloc_spray(blocks, size) {
    var block_size = size / 2;
    var marker = unescape(“%ubeef%udead”);
    var content = unescape(“%u6666%u6666”);

    while(content.length < block_size / 2) {
        content += content;
    }

    var arr = [];
    for(i = 0; i < blocks; i++) {
        ...
        var block = marker + content + padding;

        while(block.length < block_size) {
            block += block;
        }

        arr[i] = block.substr(0);
    }
}



Controlled deallocations
    ...

    for(i = 0; i < blocks; i += 2) {
        delete(arr[i]);
        arr[i] = null;
    }

    var ret = trigger_gc();
    ...
}

function trigger_gc() {
    var gc = [];

    for(i = 0; i < 100000; i++) {
        gc[i] = new Array(); 
    }

    return gc;
}



jemalloc spraying

Firefox implements mitigations against traditional heap 
spraying

Allocations with comparable content are blocked

The solution is to add random padding to your 
allocated blocks [1]

For a complete example see our 
jemalloc_feng_shui.html



CVE-2011-3026

Integer overflow in libpng in 
png_decompress_chunk()

Leads to a heap allocation smaller than expected and 
therefore to a heap buffer overflow

Vulnerable Firefox version: 10.0.1

Vulnerable libpng version: 1.2.46



The vulnerability



Exploitation strategy
Adjacent region corruption

The integer overflow enables us to control the 
allocation size

Select an appropriate size class, e.g. 1024

Spray the runs of the size class with appropriate 
objects (0xdeadbeef in our example)

Free some of them, creating gaps of free slots in the 
runs, load crafted PNG

See our cve-2011-3026.html



Integer overflow

prefix_size and expanded_size are user-
controlled
0x2ec == 748

The allocation is placed on the 1024 jemalloc run



Game over



Conclusion



Mitigations
Since April 2012 jemalloc includes red zones for small/
medium regions (huge overhead, disabled by default)

What about randomizing deallocations?

A call to free() can just insert the argument in a pool 
of regions ready to be free()‘ed

A random region is then picked and released.

This may be used to avoid predictable deallocations

...but it breaks the principle of locality



Redzone



Concluding remarks
jemalloc is being increasingly used as a high 
performance heap manager

Although used in a lot of software packages, its 
security hasn’t been assessed; until now

Traditional unlinking/frontlinking exploitation primitives 
are not applicable to jemalloc

We have presented novel attack vectors and a case 
study on Mozilla Firefox

Utility (unmask_jemalloc) to aid exploit development
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